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We present a unified phenomenological kinetic framework to analyze the experimental data of
several motor proteins (either linear or rotatory). This formalism allows us to discriminate the
characteristic times of most relevant subprocesses. Explicitly, internal mechanical as well as
chemical times are taken into account and joined together in a full-cycle time where effusion,
diffusion and chemical rates, viscoelastic friction, and overdamped motion are considered. This
approach clarifies the most relevant mechanisms in a particular motor by using the available
experimental data of velocity versus external load and substrate concentration. We apply our
analysis to three real molecular motors for which enough experimental data are available: the
bacterial flagellar motor [Yoshiyuki ef al., J. Mol. Biol. 377, 1043 (2003)], conventional kinesin
(kinesin-1) [Block et al., Proc. Natl. Acad. Sci. U.S.A. 100, 2351 (2003)], and a RAN polymerase
[Abbondanzieril, Nature (London) 438, 460 (2003)]. Moreover, the mechanism of stalling a motor
is revised and split into two different concepts (mechanical and chemical stalling) that shed light to
the understanding of backstepping in kinesin-1. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2937452]

I. INTRODUCTION

Several molecular functions such as directional transport
of chemical substances, active motion, cell division, genetic
transcription, etc., are performed by molecular engines.
These machines operate as mechanical nanomotors trans-
forming chemical (i.e., nucleotide hydrolysis) or electro-
chemical potential (ion flux) into mechanical work. Me-
chanical observables are now experimentally accessible
being the mean velocity, linear or angular, the better studied
qu21ntity.1_3’5_8 The behavior of this velocity is evaluated as a
function of different and well controlled variables, such as
the external load or the concentration of the specific sub-
strate. The obtained velocity curves are very useful to ana-
lyze biochemical and mechanical properties and are a major
criterion for evaluating different theoretical modellings. Sev-
eral approaches have been proposed such as Kramers rates,”
masters equations for chemical steps,9 ratchetlike Langevin
equations,lo etc., Kramers-type rates are based in the kinetics
to overcome energetic barriers.**!! The reaction coordinate
is identified with the direction of motion or with a projection
on this direction, in such a way that when an external force is
applied, the barrier increases with the force. In the master
equation approach a set of transition probabilities for a set of
assumed different chemical steps are proposed. Within this
chemical scenario, mechanical variables such forces and spa-
tial steps are difficult to incorporate and some important as-
sumptions have to be made.”'? On the other hand ratchetlike
models are more mechanical but chemical ingredients, such
as ATP (Adenosine triphosphate) hydrolysis, are not so
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simple to incorporate in the modelings. Nevertheless, it is
clear that molecular motors involve chemical and mechanical
aspects that cannot be separated and have to be worked to-
gether in any modeling.

However, the above mentioned modeling is not the only
possible way to study such type of devices. We know that a
molecular motor operates in a succession of cycles where
each cycle is composed of different subprocesses. Not all of
them are necessarily mediated by energetic barriers. There
can be entropic barriers' or other type of processes that are
not directly coupled to displacement of the center of mass of
the motor.

In this work we will focus on the different subprocesses
that can be relevant in this problem, determining which are
dominant and which are less relevant. Our approach has
enough generality to be applied to three very different de-
vices: a rotatory motor such as the bacterial flagellar motor
(BFM);l and two linear motors: a conventional Kkinesin
(kinesin-1)? and a RNA polymerase (RNAp).’

Specifically we postulate that the most relevant quantity
is the characteristic time of each subprocess, from which the
contribution to the mean velocity can always been obtained.
Let t; be the time (often stochastic) of a subprocess in the
motor cycle with a fixed L or A@ (linear or angular) step
displacements per cycle, respectively. Then, if this cycle is
composed of the subprocesses 1,2---n, acting in succession,
the average total time () of the cycle can be expressed as

(=) + )+ - +(t,), (1)
and the mean velocity (v) or the angular velocity {(w) are,
L A0
W= = @
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The latter expression can derived from the definition of
mean velocity (total displacement divided by total time) for a
trajectory that has undergone n cycles,

(v)= ﬁ — L — £ (3)

AL LA ()

where Ax;=L is the displacement performed in each cycle i
and A¢; is the time elapsed in the cycle. The formula is
strictly valid only for motors that perform all the cycles with
the same step size. However, it can be generalized for the
case of a protein performing steps of different sizes mL
(where m=1,2,...) provided that we know the relative fre-
quencies in which each step size appears. Such an expansion
could be applied for the variable step size of Myosin \AN

Note that these expressions are strictly valid only when
the transitions between the subprocesses are irreversible.
However, in a protein motor it is reasonable to suppose such
an irreversibility, since the chemical-potential differences are
considerably bigger than the thermal energy. Even if some
backward transitions can be observed experimentally, the do
not affect substantially to the mean velocity value.

From now on we will work with time averages, even
though we do not write them explicitly. Since we will as-
sume that both L and A# are fixed or known from experi-
mental data, we only have to concern about the subprocess
times. The study of fluctuations is a second order improve-
ment not considered in this work in an explicit way (al-
though the effect of temperature is considered in the process
of diffusion). This does not mean that higher momenta in the
velocity distribution are not important, but a global under-
standing of the mean value is already lacking, so we will
focus on this leaving a more refined description for further
work.

We will consider three dominant types of subprocesses,
although certainly there are more that may correspond to a
second order or more refined description. First, we suppose
that there is always a time scale for the motor to perform
internal tasks that do not depend either on the external force
fext OF the substrate concentration [S]. An example of this
could be the rate of ADP (Adenosine diphosphate) release in
kinesin-1 after ATP binding in the attached head. We call this
the internal time t;. On the one hand, the motor needs some
time to displace or to rotate in the fluid media. We call it the
mechanical time t, which can be evaluated using over-
damped dynamics and that will be load dependent. On the
other hand the energetic substrate, i.e., the nucleotides or the
ions, employ some time to diffuse and bind the motor. Here
diffusion and diffusion play an important role, and classical
chemical kinetic theory provides theoretical tools to evaluate
it. We call this the chemical time t,, Which will be both
load and energy substrate dependent. All these three charac-
teristic times operate successively in every cycle and are of
different natures.

Before ending this introduction some comments are in
order. Two types of forcing are used in the experiments: con-
servative and nonconservative. From the three motors that
we will analyze in this work, two of them use a conservative
force (kinesin and RNAp) and one uses a nonconservative
force (BFM). When utilizing optical tweezers (kinesin,
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RNAp), the applied force is directly a momentum transfer to
the bead and, by extension, to the motor. Thus one can obtain
the work performed by the motor by simply multiplying the
value of the force by the total displacement. In the noncon-
servative case, the forcing is introduced through different
bead sizes and its corresponding nonconservative Stokes
friction forces. The substrate that attach molecular motors is
quite different from motor to motor. In BFM is a flux of ions
forced by an electrochemical potential, while in kinesin of
RNAp are NTP-like nucleotides. NTP is the general notation
for {ATP,UTP,GTP,CTP}, where the last three nucleotides are
Uridine triphosphate, Guanosine triphosphate and Cytidine
triphosphate, respectively.

This paper is organized as follows. In the next section
we present the theoretical approach. Section III is devoted to
the application of our predictions to three different molecular
motors and the comparison of our results to experimental
data. Finally, we end with some conclusions.

Il. THEORETICAL APPROACH

In this section we present a detailed analysis of the three
main time scales already introduced. Each characteristic time
will be treated separately in order to address its specific pro-
cesses involved.

A. Mechanical and internal times

Molecular motors move in a viscous media where inertia
is suppressed by the friction. As a result, the dynamics are
governed by the second Newton’s law without the accelera-
tion term. To lowest order, thermal fluctuations are not re-
quired to obtain explicit predictions for the motor mean ve-
locity. For an overdamped motor which is able to exert a
constant motive force f,, along a single direction, the mean
velocity can be written as

(0) = —(fo+ o). @)
Vi

where f. is the external load and v, the translational drag
coefficient. A negative value of f, signifies useful work
from from the motor. From Eq. (4) we can get the expression
of the mechanical time,

-k
" f m + f ext |
where the mechanical stall force is found at f,,+ f.=0.

In the case of a rotatory motor (with no conservative
forces), we have instead

t

(5)

(Ve + Yex) @ = Ty, (6)

where v, is the rotational drag coefficient of the motor, vy, if
the friction of the bead attached to the motor, and 7,, the
motive torque. The mechanical time is obtained as in Eq. (5).

From Egs. (4) and (6) one can define the maximum
physical velocities in the absence of a load,

(@ =~ )

i

1
= —fm
Y
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It is worth mentioning that the above analysis is obvi-
ously incomplete and we need to consider additional types of
subprocesses in the cycle. Indeed, the mechanical time alone
cannot be responsible for the mean velocity values observed
experimentally for linear motors, while for rotatory motors
it is better to use a more sophisticated expression such as
in Ref. 1. Let us start with a simple analysis of this prob-
lem. First we take that the viscosity of the water is
7=10"° pN s/nm?, and the translational drag coefficient is
v,=6mnR, where R is the radius of the molecule. Using these
data we can estimate approximately the maximum velocity
expected in kinesin-1 or in RNAp. Silica beads in these
cases have typically R~0.5 um. In kinesin experiments,
typical motive forces are of the order of 5 pN. As a result, we
expect (U)max~ 300 /s, which is a value more than 500
times the experimentally measured maximum velocity. For
the RNAp, typical forces are approximately 25 pN. We can
then made an estimate of (V). ~2500 w/s, a value that is
about
5% 10° times the experimental velocity. From the above cal-
culations it follows that other times scales are involved in the
cycle.

The next simple correction to the mechanical time is to
assume the existence of an internal time. In fact, every motor
needs a time to perform internal jobs that are not necessarily
force or substrate dependent and during which internal pro-
cess are performed.

For example, in kinesin-1 the rate of phosphate release
in the microtubule-attached head or the rate for ADP release
in the other head may be candidates for such type of pro-
cesses. In BFM, the time for the ion to cross the membrane
does not necessarily depend on the potential difference be-
tween both sides. In general, if there were no such processes,
at zero load (or at high assisting forces) and at very high
substrate concentrations, the mean velocity would not satu-
rate to a finite value. In this saturating regime, the maximum
velocity is approximately proportional to the inverse of these
internal times. Then, we denote this time by #; and we as-
sume it takes a constant value specific of each motor. As a
result, the total mean time (¢) for a cycle is (r)=t;+1,,, while
the mean velocity (2) becomes

L
(V)= t—%L (8)

4 —
fm+fext

In Fig. 1 we plot force-velocity curves where the influ-
ence of the internal time is manifested in reducing the final
velocity.

B. Chemical time: The pocket model approach

Checking the experimental data of any molecular motor
it becomes clear that both mechanical and internal times are
not enough. We have to consider that there is a certain time
used to wait for the substrate which is diffusing in the media.
Experimentally, it has been found that the chemical times
follow Poisson distribution with, for example, a mean time
of about 50 ms in the case of highly loaded kinesin. 615 If the
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FIG. 1. Mean velocity (v) vs an external force f,. Dashed line for a process
with only mechanical time. Continuous line for a process with mechanical
and internal time. For the sake of simplicity, we have chosen L=1 nm,
v,=1 pNs/nm, f,=1 pN, and #,=1 s.

substrate concentration is low, these times will increase,
while for a very high concentration are reduced, but never
this time scale goes to zero.

After substrate binding, some chemical subprocesses
take place. The kinetics of these steps is described by the
so-called Michaelis—Menten equation, which states that the
velocity of reaction involves two different time scales where
the substrate binding follows the mass action law.

Moreover it has been observed that this chemical time
increases with an opposing load. > This is quite a surprising
fact. If the load is applied to the motor without affecting the
substrate conditions, why does the substrate take longer to
reach the motor when the load is applied? Some explanations
have been proposed. %12 The common scenario is to explic-
itly give the chemical potential along the reaction coordinate
and to map this coordinate into the spatial position in such a
way that the reaction takes place when an energetic barrier is
surmounted. The problem with this approach is that the load
affects the chemical potential in a way that it vanishes at
stalling conditions. This means that the reactants and the
products are at equilibrium. Such a consequence may hold
for reversible motors such as BFM, but we will see that for
these devices the load dependence of the chemical time is
not relevant. In mechanoenzymes as kinesin-1 or RNAp,
however, the load dependence of f.., is crucial. Even at
stalling loads the chemical equilibrium is hardly affected be-
tween the reactants and products. In fact, the approximation
that the reaction takes place irreversibly still holds well. If
we would follow an energetic wall model modulated by
Boltzmann factors, we would arrive to the conclusion that
the kinesin motor at stalling conditions would be able to
synthesize an ATP, for instance. This is not what happens in
reality, since kinesin still hydrolyzes even at backstepping.
Then, we cannot introduce the load in the chemical potential
because such a potential may be kept approximately constant
at all regimes of the load. Instead, we propose to introduce
the external force through a simple effusion model. Follow-
ing the law of mass action, we suppose that there is a time
for the substrate to enter into the cavity that is inversely
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FIG. 2. Scheme for a simple linear pocket model, given by a box with an
opening door that depends on the external load. In (0) we have the pocket
without load, and it has a certain natural opening. In (+1) we can see the
extreme case for an assisting load, where the pocket is totally opened and
the substrate, represented here by an ATP molecule, can easily bind the
cavity. Finally, in (=1) we can see the effect of a large opposing force. For
Jfexi=—f0o the cavity becomes completely closed.

proportional to the substrate concentration. Furthermore,
classical kinetic theory states that the effusion time for a
particle to cross a hole of a certain area is proportional to the
inverse of this area. By hypothesis, we suppose that this area
is affected by the load in such a way that it decreases at
opposing loads and it increases at assisting loads. In such a
model, the enzymatic activity is not supposed to be changed
by the load. For kinesin-1 and RNAp it is a reasonable sup-
position, while for the F, part of the ATP synthases we
should also take into account the effect of the load on the
catalytic processes. In other words, we propose a model
where the binding of the substrate is not mapped into the
position of the motor but it relies on an internal conformation
of the protein. Moreover, the enzymatic activity is neither
mapped into the position, i.e., the progress along the chemi-
cal potential is not associated with a displacement of the
center of mass of the motor. Only the mechanical motion is
linked with the position of the motor, which allows to sepa-
rate mechanical stepping (which can be forward or back-
ward) and chemical hydrolysis (which in our model is sup-
posed to be forward all the time). Such a separation is
necessary since the experiments in Ref. 6, as the mechanical
cycle can be inverted while the chemical cycle keeps going
forward.

Thus, let us consider that the binding site is a cavity
where the substrate has to enter (Fig. 2), as it was claimed in
Ref. 16. Then, under the influence of an opposing load, the
cavity may be strained and thus less accessible to the sub-
strate. As we have already mentioned, the binding process
can be interpreted as an effusion process where the load con-
trols the area of the hole to enter the substrate. Then, a dif-
ferent stall force (here called chemical or entropic) can be
defined as the force that completely closes the pocket and
accordingly the chemical time becomes infinite. This concept
of chemical stalling is different from the mechanical stall
force, where the opposing load equilibrates the motive force
of the motor. Our analysis thus predicts that the motor can be
stalled by two different mechanisms.

To implement analytically this idea we propose the
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FIG. 3. Opening of the pocket as a function of the external load. The solid
line corresponds to the sigmoidal version, while the dashed corresponds to
the linear case. All the parameters are set equal to unity.

simple mechanism shown in Fig. 2. In order to give an ex-
pression for the rate of the substrate entering into the pocket,
we shall consider a pocket which has a hole of area adx,
where a is the width and &x=dx(f.,,) is the load dependent
aperture of the hole. Then the effusion time for a small dif-
fusing particle to enter into the hole is inversely proportional
to the substrate concentration and to the opening area of the
cavity, i.e., «<1/a[S]éx. Note also that the size of the sub-
strate is comparable to the opening of the pocket, so there is
a certain orientation for the molecule to match the cavity (as
illustrated in Fig. 2). This is the effect of final adhesion to the
pocket, which is supposed at first approximation to be depen-
dent on the accessible surface but independent of the sub-
strate concentration. Consequently we have to include this
last effect as a constant contribution ~1/6x. Adding these
two time scales and grouping the free parameters, the chemi-
cal time is

) ;
Tchem = Sk + [S] ’ ( )

where A and B are two constants to determine. This is not
more than a quite general expression for the mass action law.
Notice that the independent term, proportional to A, is sub-
strate shape dependent but [S]-independent. To illustrate this
idea, we can consider the case of Uracile base in RNAp. For
a given pocket, four different substrates can bind in it, and all
of them have different binding rates. Despite their molar
mass and Graham’s law effects, the Uracile nucleotide UTP
has a very low rate considering that it is a relatively light
nucleotide. It has an addition rate about three times slower
than CTP, which is very similar in molecular weight. Surely
this is due to orientation and steric contributions near the
pocket. It is interesting that the explicit form of Eq. (9) can
be mapped into mixed inhibition scheme in enzymatic
theory.

The point now is to guess how this time has to depend
on the external force. We can assume, following Fig. 3, that
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FIG. 4. Mean velocity vs external force when we have an internal time plus
a chemical time, i.e., ({)=t;4+ C/[S](foxc+f0). We set t;=1's, fy=1 pN, and
C=1 s pN uM. Continuous, dashed, and dash-dotted lines correspond to
[$]=10, 1, and 0.1 uM, respectively.

the pocket has an elastic opening that is stressed when the
load is applied. Assuming a linear spring we can propose the
dependence

:f0+fext
k 9

Ox (10)

where k is the effective stiffness and f;, corresponds to the
chemical stall force: when f.,,=—f, the hole is closed. For
fext=0 we have the natural opening, and for f.,>0 the hole
has more accessible surface.

In Fig. 4 we show plots of the mean velocity when in-
ternal and chemical times are joined. We show force-velocity
curves for three different substrate concentrations. One can
note that the curvature of the plots strongly depends on the
concentration. The reason for the plateau in the high concen-
tration case is that the substrate binding is not rate limiting,
as it was experimentally observed.””

Although the linear spring pocket model is very useful to
illustrate the idea of the pocket kinetics, it is convenient to
introduce a more sophisticated version of the model in order
to have more accurate predictions. However, the philosophy
remains exactly the same. Instead of a linear spring response
it is more realistic to consider a nonlinear response of the
pocket that is still linear at low forces and bound at extreme
loads. This is achieved by using a sigmoidal function,

I, 2
5x=§[1+tanh<k—lx(fo+fext)—l>}, (11)

where [, is the longitudinal size of the pocket. We can see
how we recover the linear case for tanh x~x. Then, we still
can talk about a stiffness of the pocket. The price is the
introduction of a new parameter /,.

In Fig. 3 we plot the dependence of dx under an external
load. The main difference between the linear and the sigmoi-
dal cases is that in the latter case the pocket never closes
completely.

J. Chem. Phys. 128, 225107 (2008)

C. The generic formula

Once we have all the times involved in a single cycle,
we can write down the whole expressions (1) and (2) for the
velocity of a linear motor as a function of [S] and f.,

L
)= YL 1( B)’

(12)
1+ +—|A+—=
St fea  Ox [S]

with dx given by expressions either (10) or (11). For the
rotatory motor we can write the equivalent expression as

(o) Ao
w) =
Ae( )r+ )exl) 1 (
t4 —

i +
Ty, ox

A+ 5

[S]
where &x will be considered a constant for the case of BFM
analyzed in this work. These last two equations are the main
result in this paper. We will start now analyzing the conse-
quences, properties, and utility of these formulas.

As we have predicted before, there are two possible
values of the external force that can stall the motor, i.e.,
fo and f,,. When f.,, equals one of these values with opposite
sign, then the motor stalls either chemically or mechanically,
respectively. If fo+fy=0, then fy.,— % and the velocity
vanishes because no substrate can bind the pocket. If
Sfexttfm=0, t,,— %, and then the motive force cannot drive
the motor anymore. This scenario is interesting since the
experimental definition of stall force f is unique, that is, the
force at which the motor stops.

Let us analyze the three possible cases. If f,,=f,, both
stall forces are the same. When, f,,>f,, the first limiting
factor would be chemical. This means that even if the motor
could exert more force, no substrate can bind the pocket and
no motion is produced. The last case occurs when f,,<f.
This is the most interesting because when the motor is me-
chanically stalled, it still can bind substrate. Moreover, if we
apply now a load such that f,,+f,, <O but f.,+f,>0, then
the motor will tend to move backward but still consuming
the energy of the substrate. To characterize analytically this
backstepping we write expression (12) as

L

W el
4 —  —

: e
m+fexl 5X 5)([5]

(14)
f0+fexl > O’

where the sign of the resulting balance force is taken into
account. With this simple modification, we can see what are
the conditions for backstepping to occur, remarking that for
the sigmoidal response of the pocket this condition holds for
a broader spectrum of opposing forces. In Fig. 5 we show
plots for the three cases discussed above.

As we can see, the concept of stalling can be splitted into
two different ways of stopping the motor by applying an
external force. In Ref. 6 backstepping in kinesin-1 is ob-
served when loaded with very large and negative forces. De-
spite the reversibility of the motors such as the FO-F1-
synthase, kinesin-1 does not hydrolyze ATP when walking
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FIG. 5. Mean velocity vs the external force for a linear response of dx under
a load. Now we have internal, mechanical, and chemical times. We set all
the parameters fixed and equal to unity except f,, and f;,. The continuous line
corresponds to a f,,=fy=1 pN case. The dashed line corresponds to f,,=1,
fo=2 pN. The dotted line corresponds to f,,=2, fo=1 pN. Note that all the
continuous path holds also for dashed-line values. Both solid and dotted do
not have values below —1 pN. Note the negative velocity section for the
dashed line.

backward, but it keeps on consuming the energy from the
nucleotide. In such a situation, the external mechanical force
is greater than the motive force, but the cycle of ATP con-
sumption is not stalled yet. This is the main reason to make
such discrimination. We think that the mentioned experiment
shows that in kinesin-1 the mechanical stall force is consid-
erably lower than the force required to stop the ATP hydroly-
sis cycle, i.e., —f.

lll. RESULTS

Our aim now is to use the experimental data of velocity
versus substrate concentration and load of a particular motor
to fit our formula and get the values of the free adjustable
parameters. With this information we can guess which fea-
tures are specific of a particular motor or which ones are
common between two or all of them. It is expected that ki-
nesin and RNAp will exhibit a considerable amount of simi-
larities as both are mechanical enzymes powered by nucle-
otides.

A. A nonconservative force: The BFM

The BFM is a rotatory device that performs a torque on
an helical flagella to propel the cell. It uses the electrochemi-
cal potential across the cytoplasmic membrane to perform
the work. These engines work with a flux of protons in Es-
cherichia Coli and Na* ions in alkalophiles and marine
Vibrio species. Several experiments have been able to track
their rotation by different techniques,l’7 but only very
recently4 discrete steps have been observed. We will focus
our attention toward Ref. 1 because they provide a wide and
complete set of measurements that can be incorporated in our
theoretical framework. In this experiment, a silica bead is
attached to the flagellar filament. Then, rotating frequency of
this bead is measured through a quadrant photodiode. The
applied load is modulated through different sizes of the bead,
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thus the forcing is simply friction, and then the load is not
conservative.

The substrate of this particular motor is the sodium Na*
ion density gradient, which crosses the cytoplasmic mem-
brane of the cell producing the rotation of the flagellar motor.
Across the membrane, there is an electrochemical potential,
which is the responsible for the sodium motive force, which
we will write like 7,,,.

We now proceed to calculate all the values for the dif-
ferent free parameters of the model. First, we need to know
which is the step angle A6 for each crossing ion, if there is a
tight coupling between them. It is known ' that BFM have
different and independent torque generating units. The num-
ber of the units, depending on the particular device, can be
from 5 to 9 in alkalophilic Bacillus, 5 to 8 in V.
alginolyticus,1 and at least 11 in Escherichia coli."’ It is also
known that about 1000 Na* ions' or 1200 protons4 are re-
quired to perform a whole revolution of the motor. Focusing
on sodium ions data, we can estimate the angle per ion,

2
A~ —— ~ 0.006 rad/Na*. (15)
1000

The chemical free energy due to the concentration difference
between both sides of the membrane can be written as

[Na+]exl

AGchem = - kBT In [Na+] N
int

(16)
where kgT=4.1 pNnm is the thermal energy, [Na'],
=30 mM the ion concentration inside the membrane, and
[Na'],,, is the external concentration, which is modulated in
the experiment. The concentration gradient between [Na*];,
and [Na'].,, imposes an electrostatic gradient as well. The
free energy for this effect is given by the membrane potential
AW, which is about —150 mV. The total free energy is then

[Na+]ext

AG=-kpT'1
i n[Na+]int

+ AWV, (17)

We choose to use energy units in pN nm. We have then
1 mV=0.16 pN nm/e and AW=-24 pN nm/e. We substitute
the previous values of the parameters to obtain

AG =[-10.055-4.1 In[Na*].,,] pN nm. (18)
Now we can write the motive torque 7, as
-AG
=—. 19
e, (19)

As the value we already have for A6 is not precise yet, we
can obtain another estimation and compare it to the previous
one. From the experimental data we know that for different
Na* concentrations, we have values for the torque which can
be fitted from the experimental data in Ref. 1,

Tm ~ Cl + C2 ln[NaJ']exl, (20)

where C;=1464 pNnm and C,=586 pNnm. We can see
how these values correspond to different estimations of A6.
As the thermal energy is well known, C, is used to give
A#=7x1073, in a good agreement with our previous estima-
tion. On the other hand, the independent term can be used
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Rotation rate (Hz)

NaCl (mM)

FIG. 6. Mean rotation rate vs [Na‘*].,, concentration. Open circles, filled
squares, and crosses correspond to beads of diameters of 0.60, 0.85, and
1.08 uM, respectively. The dotted lines are standard M-M fits. The solid
lines correspond to a generalized interpretation of the law mass action, i.e.,
the rate of a reaction is proportional to [S]", where if A=1 we recover the
classical version. For solid lines we use A=0.8, which is in more agreement
with the data at low substrate concentrations.

to give a more precise value for the membrane potential,
A¥V=-151.2 mV, which is in agreement with the value
given in the Ref. 1.

We can now write down the frequency v of the motor as
a function of the external sodium concentration and of the
external torque, which is nothing more than Eq. (13) divided
by 2,

AOR2
+ a4 + 7rA02
[Na+ A 10.245+4.1 ]n[Na+]em - AaText

ext

V=

ap
(21)

We recall that in the case of BFM motor we consider dx as a
constant. There are some reasons to justify it. First, ions are
considerably smaller than nucleotides, and they do not need
a specific binding orientation, so a possible small decrease in
the cross section of the cavity should not appreciably affect
the rate on entrance. Secondly, in this motor the torque is
transmitted through the torsion of the connecting axis which
is far away from the cavities, which are not necessarily de-
formed then. But the main reason is that this nonconservative
force is not active when the motor is not rotating, i.e., the
bead does not perform a torque: it only resists it. Conse-
quently we cannot exactly know whether a conservative
force experiment would show that chemical times are appre-
ciably affected by the load. On the one hand a, accounts for
the sum of internal and for the adhesion time, put together
since they do not depend on the load here. Then, ay=¢t;
+A/ dx. On the other hand a; modulates the influence of the
effusive part of the chemical time and propose the expression
a,=B/[S]". Here \ is the exponent of the law of mass action,
which is not necessarily 1 as it seems to be the case of highly
diffusive ions. In fact, we will use A=0.8 which clearly fits
better the frequency-concentration curves as seen in Fig. 6
for very low ion concentrations. In this motor we have not
assumed that the chemical time depends on the external

J. Chem. Phys. 128, 225107 (2008)
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FIG. 7. Frequency vs the generated torque for the flagellar motor. Hereafter,
points are always experimental data and lines are a fit from Eq. (20). Circles,
triangles, and squares correspond to 50, 10, and 3 mM sodium concentra-
tions, respectively. Notice how the stall torque is [Na*].,, dependent.

torque but only on the ion concentration. This is consistent
with a picture where the ions do not have any difficulty to
enter into the cavity.

In Fig. 7 we plot the frequency-torque curves for the
fitted values of Table I. There are three cases which corre-
spond to different ion concentrations. Note that in this case,
it is found in the literature plots of the torque versus fre-
quency. We only invert the expression to plot the data as it is
presented in the original reference. The overall agreement is
reasonably good considering the error that is introduced by
the considerable technical difficulties of the experiment.

B. A conservative force: Kinesin-1 and RNAp

In this section we will simultaneously deal with two ex-
amples of molecular motors: the kinesin-1 and the RNAp,
whose physical properties can be measured experimentally
with optical trapping.z’3 These motors have a certain amount
of similarities and differences which our approach can dis-
criminate extracting relevant information and interesting
conclusions.

Both machines are linear motors walking along one-
dimensional and polar tracks. They hydrolyze nucleotides in
a well localized pocket, and most important for our purposes,
both motors have chemical times that strongly depend on the
load. As the external force is conservative we can also study
the case of assisting loads, so we can obtain a wider response
spectrum of the motor in the presence of a variety of forcing.

We start using the well known facts: kinesin performs
8 nm steps and stalls with forces of approximately ~5 pN,

TABLE 1. Values of the parameters for the flagellar motor obtained by
fitting Eq. (21) to the experimental data of Ref. 1.

Parameter Value
A6 7% 1073 rad
Y, 0.1 pN nm s/rad
ap 12X10° s
a, 7.5%X107% s mM*
N 0.8 (dimensionless)
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TABLE II. Values of the parameters for kinesin and RNAp motors, obtained
by fitting experimental data from Refs. 2 and 3, respectively.

Parameter Kinesin RNAp
Y ~0 pNs/nm ~0 pNs/nm
t; 0.003 s 0.034 s
A’ 0.0178 s 0.016 s
B’ 1.27 uM's 1.5 uM's
fo 3.6+0.28 In[ATP] pN 13.53 pN

while RNAp performs 0.37 nm steps and stalls with forces of
~25 pN. While kinesin hydrolyzes ATP, RNAp can consume
the four types of nucleotides ATP, GTP, CTP, and UTP, gen-
erally expressed as NTPs. In the experiment for RNAp, NTP
concentrations are chosen in such a way that all the nucle-
otides bind the pocket with same rate. This set of relative
concentrations is called [NTP],.

First we will focus our attention to kinesin-1, using the
experimental data of Refs. 2 and 5. The expression derived in
Eq. (12) can be rewritten in a Michaelis—Menten form (iden-
tifying [S]=[ATP]),

ATP
(o) = Lol ATPL (22)
ky +[ATP]
where
L
Umax=", (23)
A 'ylt
—+t+
5)( fm +fext
and
B
A+ 5x<t,- + L)
flﬂ +fext

As both ky; and u,,,, are affected by the external load, we can
interpret the effect as a mixed inhibition, as reported in Ref.
12. Now we proceed to fit this expression with the experi-
mental data to get the free parameters. One first interesting
result is that vy, is very small, and consequently it implies that
the mechanical characteristic time which is much lower than
the other times. Thus setting y,=0, the equation for the ve-
locity is

L
<U> - Ar
ti + 2
1+ tanh(C’ (fo + fex) = 1)
ATP
« AT L)
ATP] +
[ ] A’ +1; tanh(C,(fOJ"fext)_ 1)
where
2A 2B 2
A,E—, B'E—, C,E_, (26)
I, I, kL,

and the sigmoidal response of dx has been used. We show in
Table II the values that fit better the experimental data.
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FIG. 8. Mean velocity vs the external force for the kinesin. Left vertical
labels, solid lines, and open circles (O) correspond to [ATP]=1.6 mM,
while right vertical labels, dashed lines, and open squares ((J) correspond to
[ATP]=4.2 uM. In the inset, we can see the mean velocity vs ATP concen-
tration in the absence of external load. The lines correspond to the fit of Eq.
(12) with paremeter values of Table II, and symbols from experimental data
(Ref. 2).

It is important to remark that we have not found a con-
stant value for f,,. Specifically, we have found that it depends
on ATP concentration in a way that we have approximated as
logarithmic. This can be interpreted as the effect of the en-
tropic contribution in the total free energy,

[ATP]

AG=AG’ +kzTln —————.
5 TADP][P]

(27)

Some additional information can be extracted from the
value of C'. If we consider that /, is of the order of ATP size
of ~15 A, then k~2/(1.5X0.45)~3 pN/nm, which gives
an idea of how stiff is the pocket. In Fig. 8 we can see how
our calculations and the experimental data fit together.

Now we perform a similar analysis to the RNAp motor.
Again we obtain that we can neglect the mechanical time.
Now L=0.37 nm and [S]=[NTP]. In Table II we show
the best fitted values of the free parameters which can be
compared to the kinesin ones. In Fig. 9 we can compare our

———— 8 T———T— .
= L HINTP]eq [ 10[NTP]eq L
= 6 T
< 038 - L
z o y
15 L
S 04 -1
© 2+ s
> L

S U 1 P S

0 -20 0 20 40 0 -20 20 40

I
0
BT ] BT

20 [ 250INTP],

% 20 [ 100[NTP]eq
< s 15
E; 10 10r ]
< s 5 -
ol 11 Py I R T
220 0 20 40 20 0 20 40
f_ (N f,.. (PN)

FIG. 9. Mean velocity, measured in bp/s, vs external force for RNAp. Left
top, right top, left bottom, and right bottom correspond to [NTP]=1, 10,
100, and 250[NTP],,, respectively. The lines correspond to Eq. (12) with
parameter values Table II, and symbols form experimental data of Ref. 3.
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calculations by using Eq. (12) to the tabulated parameters
versus the experimental results of Ref. 3 for four different
NTP concentrations.

IV. DISCUSSION

In BFM, our theory reveals that there is no need for a
load-dependent chemical time, as the sodium ions diffuse
rapidly into the motor. Maybe extremely low ionic concen-
trations would require the introduction of such dependence,
but it was not needed in the scale of the experiment of Ref. 1.
It is stated in Ref. 18 that every model for BFM must include
the soft linkage between the motor and the viscous load. This
assumption is based on the compliance of the hook, which is
measured in Ref. 19. However, we do not need to use such
fact to justify the existence of the plateau region of the motor
torque-speed curve. This plateau, which is nothing but a
rapid decay of the velocity at high loads, can be explained by
considering that the mechanical time slightly increases at
low loads, while it diverges near the stall torque, and conse-
quently it is not necessary to consider tow straight lines to fit
the data as in Ref. 18. The concept of knee velocity point
discussed in that reference can be understood as the torque
value from which the mechanical time begins to dominate
over the other processes, but it is not a kind of singular point
in the curve.

Moreover, the coupling ratio in the BFM is probably 1,
i.e., a single ion is tightly coupled with the rotation, but there
is no conclusive evidence for such an assumption. In Ref. 4
they measure 0.24 rad steps, which correspond to 26 steps
per revolution. This is precisely the periodicity of the FliG
protein in the structure. However, the existence of a smaller
periodicity in the steps is not discarded yet. It is estimated
that around 1000 ions are needed to complete a revolution,
so there is a possibility that an accumulation of several ions
is needed to perform a step, but maybe this step can be
decomposed in several substeps, each one corresponding to
an ion transition. If the numbers above are confirmed, about
40 ions would be needed for a torque generating unit to
complete its power stroke cycle.

For the BFM we can conclude that our approach is able
to deal and fit the experimental data within a reasonable wide
range of parameter values. The difficulties of the experiment
make a finer approach unavoidable for now. No pocket as-
sumption has been made, so the chemical time is not appre-
ciably affected by the load.

In the case of NTP-driven motors, we can appreciate
some differences and similarities between them. First, it is
remarkable that the internal time for the RNAp, #,=0.034 s,
is an order of magnitude longer than for kinesin, #;=0.003 s.
This is consistent with a motor that, apart from transcrip-
tional pauses, which are removed from the data, performs
a more sophisticated task every cycle.20 Concerning the
substrate dependence of the stall force, our model suggests
that in RNAp the stall force does not depend on the load,
fo=13.53 pN, while in kinesin it does, f;=3.6
+0.28 In[ ATP] pN. This dependence was observed in Ref. 5
even though more recent measurements’ suggest that the
stall force is [ATP] independent. However, we are trying to
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fit the data where the stall force does depend on [ATP], even
if it is an artifact of the setup. In any case, this is an open
question that more refined experiments should clarify. It is
interesting to note that in the latter reference the external
forces can be up to —15 pN, which clearly indicates that f
should have a stronger value.?! However, the data provided
in that reference lack more realizations to perform a detailed
quantitative analysis of the mean velocity in the high-load
regime. Additionally, we can see how C’ is about ten times
greater in the case of kinesin, C' =0.45 pN‘l, than in the case
of RNAp, C’'=0.04 pN~'. Since both mechanoenzymes bind
similar-size nucleotides, it is reasonable to suppose that [, is
similar as well in both motors. So then, as the stiffness is
inversely proportional to the parameter C’, the stiffness of
the pocket in RNAp has to be considerably higher than in
kinesin (of the order of ten times). This may be the reason
why the value of f; for RNAp does not seem to depend
on the substrate concentration. If the pocket is stiffer, it
hardly changes its natural, load-free conformation. It is
remarkable as well that A’ and B’ are very similar in both
mechanoenzymes (A'=0.0178s, B'=1.27 uMs for
kinesin-1, A’=0.016 s, B’=1.5 uM s for RNAp) which re-
flects that binding times of the nucleotides do not apprecia-
bly differ between them. Mechanical time is negligible in
kinesin and RNAp, which means that the power stroke
mechanism occurs in a time scale which is much lower than
other processes in agreement with the observed steplike tra-
jectories. We expect other [NTP] motors as myosins and dy-
neins to have this feature as well, since the forces and the
frictions involved in their motions imply physical velocities
much greater than their corresponding chemical rates.

We thus conclude that the kinetics of kinesin and RNAp
are regulated by very similar processes, even though some of
them are quantitatively different. Nevertheless, experimental
data from both devices can be understood under the same
conceptual framework.

It is also worth to mention here that our approach does
predict the existence of two different stalling forces: me-
chanical and chemical, which can stimulate some experi-
ments to elucidate their real existence.

Summarizing, in this paper we have analyzed the kinet-
ics of three different molecular motors with the intention of
providing a general framework to deal with mechanochemi-
cal molecular engines. These three motors are a very repre-
sentative set because all of them have been accurately mea-
sured in single molecule experiments. Our approach can
enlighten the most relevant and specific properties of each
one that should be taken into account in future more refined
modelings.
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